Source code for elicit.configs

# noqa SPDX-FileCopyrightText: 2024 Florence Bockting <florence.bockting@tu-dortmund.de>
#
# noqa SPDX-License-Identifier: Apache-2.0


[docs] def save_history( loss: bool = True, loss_component: bool = True, time: bool = True, hyperparameter: bool = True, hyperparameter_gradient: bool = True, ): """ Controls whether sub-results of the history object should be included or excluded. Results are saved across epochs. By default all sub-results are included. Parameters ---------- loss : bool, optional total loss per epoch. The default is True. loss_component : bool, optional loss per loss-component per epoch. The default is True. time : bool, optional time in sec per epoch. The default is True. hyperparameter : bool, optional 'parametric_prior' method: Trainable hyperparameters of parametric prior distributions. 'deep_prior' method: Mean and standard deviation of each marginal from the joint prior. The default is True. hyperparameter_gradient : bool, optional Gradients of the hyperparameter. Only for 'parametric_prior' method. The default is True. Returns ------- save_hist_dict : dict dictionary with inclusion/exclusion settings for each sub-result in history object. """ save_hist_dict = dict( loss=loss, loss_component=loss_component, hyperparameter=hyperparameter, hyperparameter_gradient=hyperparameter_gradient, ) return save_hist_dict
[docs] def save_results( target_quantities: bool = True, elicited_statistics: bool = True, prior_samples: bool = True, model_samples: bool = True, model: bool = True, expert_elicited_statistics: bool = True, expert_prior_samples: bool = True, init_loss_list: bool = True, init_prior: bool = True, init_matrix: bool = True, loss_tensor_expert: bool = True, loss_tensor_model: bool = True, ): """ Controls whether sub-results of the result object should be included or excluded in the final result file. Results are based on the computation of the last epoch. By default all sub-results are included. Parameters ---------- target_quantities : bool, optional simulation-based target quantities. The default is True. elicited_statistics : bool, optional simulation-based elicited statistics. The default is True. prior_samples : bool, optional samples from simulation-based prior distributions. The default is True. model_samples : bool, optional output variables from the simulation-based generative model. The default is True. model : bool, optional fitted elicit model object including the trainable variables. The default is True. expert_elicited_statistics : bool, optional expert-elicited statistics. The default is True. expert_prior_samples : bool, optional if oracle is used: samples from the true prior distribution, otherwise it is None. The default is True. init_loss_list : bool, optional initialization phase: Losses related to the samples drawn from the initialization distribution. Only included for method 'parametric_prior'. The default is True. init_prior : bool, optional initialized elicit model object including the trainable variables. Only included for method 'parametric_prior'. The default is True. init_matrix : bool, optional initialization phase: samples drawn from the initialization distribution for each hyperparameter. Only included for method 'parametric_prior'. The default is True. loss_tensor_expert : bool, optional expert term in loss component for computing the discrepancy. The default is True. loss_tensor_model : bool, optional simulation-based term in loss component for computing the discrepancy. The default is True. Returns ------- save_res_dict : dict dictionary with inclusion/exclusion settings for each sub-result in results object. """ save_res_dict = dict( target_quantities=target_quantities, elicited_statistics=elicited_statistics, prior_samples=prior_samples, model_samples=model_samples, model=model, expert_elicited_statistics=expert_elicited_statistics, expert_prior_samples=expert_prior_samples, init_loss_list=init_loss_list, init_prior=init_prior, init_matrix=init_matrix, loss_tensor_expert=loss_tensor_expert, loss_tensor_model=loss_tensor_model, ) return save_res_dict