elicit.plots module#
- elicit.plots.initialization(eliobj, cols: int = 4, **kwargs) None [source]#
plots the ecdf of the initialization distribution per hyperparameter
- Parameters:
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- colsint, optional
number of columns for arranging the subplots in the figure. The default is
4
.- **kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- eliobjinstance of
- Raises:
- KeyError
Can’t find ‘init_matrix’ in eliobj.results. Have you excluded it from saving?
- ValueError
if eliobj.results[“init_matrix”] is None: No samples from initialization distribution found. This plot function cannot be used if initial values were fixed by the user through the hyperparams argument in
elicit.elicit.initializer()
.
Examples
>>> el.plots.initialization(eliobj, cols=6)
>>> el.plots.initialization(eliobj, cols=4, figsize=(8,3))
- elicit.plots.loss(eliobj, weighted: bool = True, **kwargs) None [source]#
plots the total loss and the loss per component.
- Parameters:
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- **kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- eliobjinstance of
- Raises:
- KeyError
Can’t find ‘loss_component’ in ‘eliobj.history’. Have you excluded ‘loss_components’ from history savings?
Can’t find ‘loss’ in ‘eliobj.history’. Have you excluded ‘loss’ from history savings?
Can’t find ‘elicited_statistics’ in ‘eliobj.results’. Have you excluded ‘elicited_statistics’ from results savings?
Examples
>>> el.plots.loss(eliobj, figsize=(8,3))
- elicit.plots.hyperparameter(eliobj, cols: int = 4, **kwargs) None [source]#
plots the convergence of each hyperparameter across epochs.
- Parameters:
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- colsint, optional
number of columns for arranging the subplots in the figure. The default is
4
.- spanint, optional
number of last epochs used to get a final averaged hyperparameter value. The default is
30
.- **kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- eliobjinstance of
- Raises:
- KeyError
Can’t find ‘hyperparameter’ in ‘eliobj.history’. Have you excluded ‘hyperparameter’ from history savings?
Examples
>>> el.plots.hyperparameter(eliobj, figuresize=(8,3))
- elicit.plots.prior_joint(eliobj, idx: int | list | None = None, **kwargs) None [source]#
plot learned prior distributions of each model parameter based on prior samples from last epoch. If parallelization has been used, select which replication you want to investigate by indexing it through the ‘idx’ argument.
- Parameters:
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- idxint or list or None:
only required if parallelization is used for fitting the method. Indexes the replications and allows to choose for which replication(s) the joint prior should be shown.
- **kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- eliobjinstance of
- Raises:
- ValueError
Currently only ‘positive’ can be used as constraint. Found unsupported constraint type.
The value for ‘idx’ is larger than the number of parallelizations.
- KeyError
Can’t find ‘prior_samples’ in ‘eliobj.results’. Have you excluded ‘prior_samples’ from results savings?
Examples
>>> el.plots.prior_joint(eliobj, figsize=(4,4))
- elicit.plots.prior_marginals(eliobj, cols: int = 4, **kwargs) None [source]#
plots the convergence of each hyperparameter across epochs.
- Parameters:
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- colsint, optional
number of columns for arranging the subplots in the figure. The default is
4
.- **kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- eliobjinstance of
- Raises:
- KeyError
Can’t find ‘prior_samples’ in ‘eliobj.results’. Have you excluded ‘prior_samples’ from results savings?
Examples
>>> el.plots.prior_marginals(eliobj, figuresize=(8,3))
- elicit.plots.elicits(eliobj, cols: int = 4, **kwargs) None [source]#
plots the expert-elicited vs. model-simulated statistics.
- Parameters:
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- colsint, optional
number of columns for arranging the subplots in the figure. The default is
4
.- **kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- eliobjinstance of
- Raises:
- KeyError
Can’t find ‘expert_elicited_statistics’ in ‘eliobj.results’. Have you excluded ‘expert_elicited_statistics’ from results savings?
Can’t find ‘elicited_statistics’ in ‘eliobj.results’. Have you excluded ‘elicited_statistics’ from results savings?
Examples
>>> el.plots.elicits(eliobj, cols=4, figsize=(7,3))
- elicit.plots.marginals(eliobj, cols: int = 4, span: int = 30, **kwargs) None [source]#
plots convergence of mean and sd of the prior marginals
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- colsint, optional
number of columns for arranging the subplots in the figure. The default is
4
.- spanint, optional
number of last epochs used to get a final averaged value for mean and sd of the prior marginal. The default is
30
.- kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- Raises:
- KeyError
Can’t find ‘hyperparameter’ in ‘eliobj.history’. Have you excluded ‘hyperparameter’ from history savings?
Examples
>>> el.plots.marginals(eliobj, figuresize=(8,3))
- eliobjinstance of
- elicit.plots.priorpredictive(eliobj, **kwargs) None [source]#
plots prior predictive distribution of samples from the generative model in the last epoch
- Parameters:
- eliobjinstance of
elicit.elicit.Elicit()
fitted
eliobj
object.- kwargsany, optional
additional keyword arguments that can be passed to specify plt.subplots()
- eliobjinstance of
- Raises:
- KeyError
Can’t find ‘target_quantities’ in ‘eliobj.results’. Have you excluded ‘target_quantities’ from results savings?
Examples
>>> el.plots.priorpredictive(eliobj, figuresize=(6,2))