elicit.targets module#

elicit.targets.use_custom_functions(simulations: dict, custom_func: Callable) Callable[source]#
elicit.targets.computation_elicited_statistics(target_quantities: Dict[str, Tensor], targets: List[Target]) Dict[str, Tensor][source]#

Computes the elicited statistics from the target quantities by applying a prespecified elicitation technique.

Parameters:
target_quantitiesdict[str, tf.Tensor], shape: [B,num_samples,num_obs]

simulated target quantities.

targetslist[dict]

list of target quantities specified with elicit.elicit.target().

Returns:
elicits_resdict[res, tf.Tensor], shape: [B, num_stats]

simulated elicited statistics.

elicit.targets.computation_target_quantities(model_simulations: Dict[str, Tensor], prior_samples: Tensor, targets: List[Target]) Dict[str, Tensor][source]#

Computes target quantities from model simulations.

Parameters:
model_simulationsdict[str, tf.Tensor]

simulations from generative model.

prior_samplestf.Tensor; shape = [B, rep, num_params]

samples from prior distributions of model parameters. Currently only needed if correlations between model parameters is used as elicitation technique.

targetslist[dict]

list of target quantities specified with elicit.elicit.target().

Returns:
targets_resdict[str, tf.Tensor]

computed target quantities.