elicit.types module#

class elicit.types.Hyper[source]#

Bases: TypedDict

name: str#
constraint: Callable#
constraint_name: str#
vtype: Callable#
dim: int#
shared: bool#
class elicit.types.Parameter[source]#

Bases: TypedDict

name: str#
family: Distribution#
hyperparams: dict[str, Hyper] | None#
constraint_name: str#
constraint: Callable#
class elicit.types.QueriesDict[source]#

Bases: TypedDict

name: str#
value: Callable | Tuple | None#
func_name: str#
class elicit.types.Target[source]#

Bases: TypedDict

name: str#
query: QueriesDict#
target_method: Callable | None#
loss: Callable#
weight: float#
class elicit.types.ExpertDict[source]#

Bases: TypedDict

ground_truth: dict#
num_samples: int#
data: dict[str, list]#
class elicit.types.Uniform[source]#

Bases: TypedDict

radius: float | list#
mean: float | list#
hyper: list | None#
class elicit.types.Initializer[source]#

Bases: TypedDict

method: str | None#
distribution: Uniform | None#
loss_quantile: float | None#
iterations: int | None#
hyperparams: dict | None#
class elicit.types.Trainer[source]#

Bases: TypedDict

method: str#
seed: int#
B: int#
num_samples: int#
epochs: int#
seed_chain: int#
class elicit.types.NFDict[source]#

Bases: TypedDict

inference_network: Callable#
network_specs: dict#
base_distribution: Callable#
class elicit.types.SaveHist[source]#

Bases: TypedDict

loss: bool#
time: bool#
loss_component: bool#
hyperparameter: bool#
hyperparameter_gradient: bool#
class elicit.types.SaveResults[source]#

Bases: TypedDict

target_quantities: bool#
elicited_statistics: bool#
prior_samples: bool#
model_samples: bool#
expert_elicited_statistics: bool#
expert_prior_samples: bool#
init_loss_list: bool#
init_prior: bool#
init_matrix: bool#
loss_tensor_expert: bool#
loss_tensor_model: bool#
class elicit.types.Parallel[source]#

Bases: TypedDict

runs: int#
cores: int#
seeds: list | None#