Publications & Talks

Bockting, F., Radev, S. T. & Bürkner, P. C. (2024). Expert-elicitation method for non-parametric joint priors using normalizing flows. Preprint at https://arxiv.org/abs/2411.15826
ArXiv

Bockting F., Radev S. T., & Bürkner P. C. (2024). Contributed talk: Normalizing Flows for Simulation Based Expert Prior Elicitation. Presented at MathPsych (Society for Mathematical Psychology)
Slides

Bockting F., Radev S. T., & Bürkner P. C. (2024). Contributed talk: Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models. Presented at ISBA (International Society for Bayesian Statistics).
Slides

Bockting F., Radev S. T., & Bürkner P. C. (2024). Invited talk: Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models. First presented at Bayes@Lund.
Youtube Slides

Bockting, F., Radev, S. T. & Bürkner, P. C. (2024). Simulation-based prior knowledge elicitation for parametric Bayesian models. Scientific Reports 14, 17330 (2024). https://doi.org/10.1038/s41598-024-68090-7
PDF ArXiv project website

Heck, D. W., Bockting, F. (2023). Benefits of Bayesian Model Averaging for Mixed-Effects Modeling. Computational Brain & Behavior 6, 35–49.
PDF journal

van Doorn, J., Haaf, J. M., Stefan, A. M., Wagenmakers, E. J., Cox, G. E., Davis-Stober, C. P., …, Bockting, F., & Aust, F. (2023). Bayes factors for mixed models: A discussion. Computational Brain & Behavior, 6, 1-13.
PDF journal

Bockting, F. & Heck, D. W. (2021). Measuring Individual Differences in the Truth Effect: A formal analysis. Fast Talk at MathPsych

Stephan, A., Walter, S., Anton, T., Barkmann, M., Bockting, F., Dielen, G., Dziomba, L., Lang, A., Ruland, M., & Schütze, P. (2021). Nachwort. In Turing A. M. Computing Machinery and Intelligence. Können Maschinen Denken? (pp. 131-201). English/German. Reclam.
Reclam